Adaptive estimation of linear functionals by model selection
نویسندگان
چکیده
We propose an estimation procedure for linear functionals based on Gaussian model selection techniques. We show that the procedure is adaptive, and we give a non asymptotic oracle inequality for the risk of the selected estimator with respect to the Lp loss. An application to the problem of estimating a signal or its r derivative at a given point is developed and minimax rates are proved to hold uniformly over Besov balls. We also apply our non asymptotic oracle inequality to the estimation of the mean of the signal on an interval with length depending on the noise level. Simulations are included to illustrate the performances of the procedure for the estimation of a function at a given point. Our method provides a pointwise adaptive estimator. AMS 2000 subject classifications: 62G05, 62G08.
منابع مشابه
Speed Observer Design for Linear Induction Motor Drives
In this paper, a neural network model reference adaptive system speed observer is designed, which can be used in speed control of linear induction motors (LIMs). Dynamical equations of LIM have been considered accurate. In other words, the end effect and the electrical losses of the motor have been included in the motor equivalent circuit. Then equations of the reference model and adaptive mode...
متن کاملAdaptive estimation of linear functionals in the convolution model and applications
We consider the model Zi = Xi + εi for i.i.d. Xi’s and εi’s and independent sequences (Xi)i∈N and (εi)i∈N. The density of ε is assumed to be known whereas the one of X1 denoted by g is unknown. Our aim is to study the estimation of linear functionals of g, 〈ψ, g〉 for a known function ψ. We propose a general estimator of 〈ψ, g〉 and study the rate of convergence of its quadratic risk in function ...
متن کاملPenalized Bregman Divergence Estimation via Coordinate Descent
Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...
متن کاملComparison of Linear and Threshold Models for Estimation Genetic and Phenotypic Parameters of Success of Conception at First Service and Inseminations to Conception in Holstein Cattles in East Azarbayjan Province
In this research genetic and phenotypic parameters were estimated using linear and threshold models, for reproductive traits, data from 6 large industrial dairy herd of East Azerbaijan province collected by Agriculture Jihad Organization during 10 years (2001-2010). Best linear unbiased predictions of traits breeding values were estimated using Restricted Maximum Likelihood method by WOMBAT sof...
متن کاملComparison of Linear and Threshold Models for Estimation Genetic and Phenotypic Parameters of Success of Conception at First Service and Inseminations to Conception in Holstein Cattles in East Azarbayjan Province
In this research genetic and phenotypic parameters were estimated using linear and threshold models, for reproductive traits, data from 6 large industrial dairy herd of East Azerbaijan province collected by Agriculture Jihad Organization during 10 years (2001-2010). Best linear unbiased predictions of traits breeding values were estimated using Restricted Maximum Likelihood method by WOMBAT sof...
متن کامل